Mathématiques relatives au chapitre 8

Flux d’énergie finale pétrolier à la disposition des consommateurs.

En l’absence de construction massive d’ER (Energie Renouvelable) et à cause de la diminution du taux d’extraction annuelle de pétrole, une fois le pic de Hubbert passé, le flux d’énergie final pétrolier à disposition des consommateurs est donné pour chaque année A par la relation :

                                                 Ep(A) = Ep(A0) x (1-d)ⁿ                      ( 1)                                                                                                   

Où    n =∆A = (A-A0)

-          A est l’année considérée

-          A0 est l’année pendant laquelle  prend fin le pic pétrolier et débute la décroissance du  taux  d’extraction.

-          d est le taux de décroissance annuel du flux d’énergie final pétrolier après le pic.

-          Ep(A0) est le flux d’énergie final pétrolier à disposition des consommateurs au moment de la fin du pic pétrolier ,en TWh/an

Dans l’exemple du chapitre 8, d= 0.02 et Ep(A0) = 40'000 TWh/an

Dans le chapitre 8 nous avons fait l’hypothèse que les ER seront capables de compenser intégralement les pertes pétrolières d’énergie finale .Ainsi, dans ce scénario, les consommateurs bénéficient constamment d’un flux total d’énergie  finale égal à Ep(A0), mais dans lequel n’est pas comptée le flux d’énergie réservé à  la production des ER. Ainsi les installations ER devront produire en l'année A un flux d'énergie  ∆Ep(A) donné par:

                                   ∆Ep(A) = Ep(A0) - Ep(a)                                 (2)                                                                                                  

Les ER sont constituées d’installations capables de fournir chacune une énergie annuelle, ou un flux d'énergie, EER exprimée en TWh/an.

Dans le chapitre 8, EER= 0.02 TWh/an

Le nombre d’installations  ER qui devront être en activité en l’année A est

                                           N(A) =  ∆Ep(A) / EER

Si le temps de vie des ER est Tv, le nombre d’installations ER à construire Nc(A) pour chaque année A est :

                                       Nc(a)= N(A) + N(A-Tv)                               (3)

Dans l’exemple du chapitre 8, Tv=20 ans

Calcul de l’énergie totale à investir pour construire les ER

Hypothèses :

       1°)  L’énergie pour construire les ER est prise uniquement sur le pétrole

       2°) Le rapport de l’énergie produite sur l’énergie investie est REEIp

       3°) Il existe un laps de temps ∆t entre le moment où l’énergie pour construire les ER est prise sur le flux d’énergie pétrolier et le moment où les ER sont capables de produire  un flux d’énergie Ep égale à celui investi Ei.

Le rapport REEIp est par définition le rapport entre l’énergie produite par les ER au cours de leur existence, divisé par l’énergie totale qu’il aura fallu dépenser pour construire, entretenir et remplacer ces installations ER (voir note 3)

Si l’énergie investie se fait de manière continue tout au long du programme de la construction des ER nous pouvons admettre, en première approximation, que REEIp est égal au rapport du flux annuel d’énergie que produisent les ER en l’année A+∆t, divisé par le flux d’énergie pétrolier qu’il aura fallu investir  en l’année A, Ei(A). Cela s’écrit :

                                       REEIp = ∆Ep(A+∆t) / Ei(A)       

                     Soit            Ei(A)=   ∆Ep(A+∆t) / REEIp

Après un temps Tv, il faudra encore investir un flux d’énergie pour remplacer les ER arrivées en fin d’existence. Ainsi pour toute année A > A0

                           Ei(A) = (∆Ep(A+∆t) + ∆Ep(A+∆t -Tv)) / REEIp         (4)                                             

Flux d’énergie final pétrolier Ec(A) à disposition des consommateurs en l’année A

C’est le flux d’énergie final pétrolier qu’il y aurait en l’absence de construction des ER, moins le flux d’énergie final pétrolier qu’il aura fallu investir dans la construction des ER. C’est l’équation (1) moins l’équation (4)

                              Ec(A) = Ep(A) - Ei(A)                                        (5)

Les ER ne sont plus fabriquées à partir de l’énergie pétrolière mais à partir des ER

Pour que les ER soient capables de fournir de l’énergie aux consommateurs et de  plus fournir de l’énergie pour fabriquer d’autres ER, il faut que le REEIER soit plus grand que 1. Si tel est le cas, le flux d’énergie net EnER qui reste à disposition pour ces constructions est donné pour l’année A par :

                           EnER(A) = EpER(A) - EiER(A)                                 (6)

Mais puisque

                            REEIER =EpER(A) / EiER(A)

Le flux d’énergie nette EnER(A) est, à cause des hypothèses de départ, égal à la perte d’énergie pétrolière en l’année A,  moins ce que donne encore les ER fabriquées à partir du pétrole, après que leurs constructions aient été stoppées en l’année Aa. Dès lors :

                           EnER(A) = ∆Ep(A) - N(A-Aa-Tv) x EER                    (7)

Alors, le flux d’énergie que devra produire l’ensemble des ER pour avoir une énergie nette égale à la demande, en l’année A vaut :

                            EpER(A) = EnER(A) / (( REEIER – 1)/REEIER)           (8)       

Si               REEIER = ∞           alors                         EpER(A) = EnER(A)

                  REEIER = 5            alors                         EpER(A) = EnER(A) x 1,25

                  REEIER = 2            alors                         EpER(A) = EnER(A) x 2

                  REEIER = 1,5         alors                         EpER(A) = EnER(A) x 3

                  REEIER = 1            alors                         EpER(A) = EnER(A) x ∞   

Le nombre d’installations ER en activité en l’année A est donné par :

                                       N(A) = EpER(A) / EER                             (9)

                                 

 

 

 

 

 

 

Poker tutorials on 888poker or play poker on partypoker
Copyright 2011 www.ceremovi.org - Mathématiques relatives au chapitre 8. www.ceremovi.org
Joomla Templates by Wordpress themes free